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Abstract

Emerging wearable and environmental sensor technologies provide health profes-
sionals with unprecedented capacity to continuously collect human behavioral data
for health monitoring and management. This enables new solutions to mitigate
globally emerging health problems such as obesity. With such outburst of dynamic
sensor data, it is critical that appropriate mathematical models and computational
methods are developed to translate the collected data into accurate characterization
of the underlying health dynamics, enabling more reliable personalized monitoring,
prediction, and intervention of health status changes. In addition to addressing
common analytic challenges in analyzing sensor behavioral data, such as missing
values and outliers, we focus on modeling heterogeneous dynamics to better capture
health status changes under different conditions, which may lead to more effective
state-dependent intervention strategies. We implement switching-state dynamic
system models with different complexity levels on real-world daily behavioral data.
Evaluation experiments of these models are conducted to demonstrate the impor-
tance of modeling the dynamic heterogeneity, as well as simultaneously conducting
missing value imputation and outlier detection in achieving interpretable health
dynamic models with better prediction of health status changes.

1 Introduction

Currently, obesity is considered a public health issue as over one third of the US adult population
is classified as obese [7]. However, addressing obesity is believed to be beyond the capacity of the
healthcare industry [10], motivating the development of smart and scalable health solutions that can
automate personalized activity planning.

Smart health solutions are becoming ever more feasible with the rapid development of sensors and
mobile applications that can continuously collect human behavioral data such as physical activity,
food intake, and body mass index (BMI) [3]. However, with such outburst of dynamic sensor data,
several challenges arise in translating them into personalized health monitoring and activity plans
effectively. Besides common challenges in analyzing sensor behavioral data, such as missing values
and outliers, modeling the complex health dynamics with potential influence from human daily
behaviors also poses significant challenges.



Figure 1: First-order SAR model

We implement a switching-state auto-regressive (SAR) population model [1] to capture the complex
interactions of human daily behaviors. We have adopted this model framework due to its capability to
capture instantaneous changes in human activity and to classify inherent health stages in a population.
We compare our model to a similar dynamic model that does not consider these factors, showing that
considering the switching-state behavior and population-wide effects improves the model’s prediction
performance significantly.

To handle missing values and outliers in daily behavioral data, we simultaneously consider missing
value imputation and outlier detection while conducting model identification. We compare our
simultaneous imputation and outlier detection method with typical data preprocessing approaches,
showing that integrating missing value imputation and outlier detection with model identification
significantly improves model accuracy. The preprocessing methods we compare include off-the-shelf
missing value imputation and outlier detection methods, such as mean imputation and median filters,
as well as analytic methods based on functional data analysis methods, such as functional principal
component analysis (FPCA) [9, 13].

Finally, we conduct evaluation experiments to obtain the most parsimonious SAR model with the
learned model parameters based on a real-world daily behavioral dataset, which shows improved
prediction accuracy of BMI temporal changes with different daily activity profiles.

2 Methods

In our presentation, we adopt the following notation: regular lowercase letters denote scalars and
boldface lowercase letters represent column vectors. When not explicitly specified, subscripts index
time while superscripts index subjects. We use a colon (:) when we refer to a group of variables at
different indices. For example, x1:n 1:t refers to the variable x at time 1 to t of subjects 1 through n.

2.1 Switching Auto-Regressive Population Model

We implement a population switching-state auto-regressive model in our analysis of the daily be-
havioral dataset. To model the potential heterogeneous dynamic changes of health status for each
subject under study, we assume that the underlying dynamic system can switch between different
dynamic behaviors under different conditions at different times. For the ith subject (i ∈ {1, . . . , N})
at time t, we assume that there exists a discrete latent health state sit determining the dynamics of
a health indicator, represented by xit, which is also influenced by p input variables capturing daily
life behavior, denoted by νit = [νit,1, . . . , ν

i
t,p]

ᵀ. Specifically, in this paper, we are interested in the
observed health indicator BMI as the health status of interest, and its change across time. The input
variables include subjects’ daily behavioral data, such as calorie intake (food), calories burned during
workout or exercise, and workout time.

The SAR model is an extension of the classical auto-regressive (AR) model, which describes the time
evolution of a variable that depends linearly on its past realizations, defined as follows:
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xit = axit−1 + bᵀνit + c+ ηit (1a)

ηit ∼ N (0, σ2
i ) (1b)

Here, a, b, c, and σ2
i are the system coefficients of the AR model and the white noise variance

respectively. Extending the above formulation, the SAR model allows these model parameters to be
determined by a latent state s, denoted explicitly as a(s), b(s), c(s), and σ2

i (s). Specifically, SAR
models the BMI dynamics by the following system model:

xit = a(sit)x
i
t−1 + b(sit)

ᵀνit + c(sit) + ηit (2a)

ηit ∼ N (0, σ2
i (sit)) (2b)

In general, the system in 2 can incorporate any order of time lags Lx and Lu to model the potential
high-order dependence relationships so that the model can be extended as follows:

xit = a(sit)
ᵀxit−1 + b(sit)

ᵀuit + c(sit) + ηit (3a)

xit−1 = [xit−1, . . . , x
i
t−Lx

]ᵀ (3b)

uit = [(νit−1)ᵀ, . . . , (νit−Lu+1)ᵀ]ᵀ (3c)

In this paper, we adopt a population SAR model assuming that the system coefficients a(s), b(s), and
c(s) are shared between subjects while each subject has independent measurement noise variance
σ2
i (s). This treatment of measurement noise is reasonable, as each subject may have different levels

of fluctuation in their daily behavior changes. Additionally, the subjects may also log their daily
behaviors differently, with varying degrees of noise intensity

For the case with Lx = Lu = 1, the population SAR model is illustrated in Fig. 1: It has a
finite Markov chain layer to model the health state changes along time and an AR model layer to
capture the "controlled" dynamic changes at different health states, both assumed to be shared in the
population under study. Clearly, introducing the hidden layer increases the model flexibility to enable
the potential of modeling abrupt changes in human health status as well as daily activity. On the
other hand, instead of assuming different subjects have their own independent dynamic models, the
population model assumption controls the model complexity to avoid overfitting with the observed
measurements and borrows signal strengths across subjects, especially considering the potential
missing values and outliers in daily behavioral data.

2.1.1 Learning the SAR Model

To learn such a population SAR model given the observed daily behavioral data and BMI changes,
we have the following auto-regressive coefficients as well as health states to identify:

θ = {a(s), b(s), c(s), σ2
i (s), s ∈ {1, . . . , S}, i ∈ {1, . . . , N}} (4)

As each subject’s time series measurements are independent of each other given the population SAR
model, we have the following likelihood function of the population SAR model given observed data:

p(X1:N , S1:N |U1:N , θ) =

N∏
i=1

pi(X
i, Si|U i, θ) (5a)

pi(X
i, Si|U i, θ) = p(xi1|ui1, si1, θ)p(si1)×

Ti∏
i=2

p(xit|xit−1,u
i
t, s

i
t, θ)p(s

i
t|sit−1) (5b)

Here, Xi, Ui, and Si are the health indicator (BMI), input covariates, and latent state values of subject
i at all time-points, while Ti is the last time index of subject i.
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To derive the maximum likelihood estimates (MLE) for model identification, Expectation-
Maximization (EM) is often adopted to find the set of system coefficients and variances a(s),
b(s), c(s), and σ2

i (s) for all s ∈ {1, . . . , S}. This method alternates between estimating the state
conditional probabilities p(sit|Xi, U i) and optimizing the system coefficients based on the estimated
state probabilities in the expectation and maximization steps respectively.

E-Step: The expectation step is done by the Forward-Backward algorithm [1], which estimates
the state probability p(sit|Xi, U i) by combining partial solutions conditioned on past and future
observations with respect to t. The partial solutions conditioned on past observations are denoted
by α(sit) = p(sit|xi1:t, u

i
1:t), while the partial solutions for future observations are denoted by

β(sit−1) = p(xit:Ti
|sit−1, u

i
t:Ti

). Given the model, we denote p(xit|sit, xit−1, u
i
t) by p̂(xit|sit).

p̂(xit|sit) ∼ N (a(sit)
ᵀxit−1 + b(sit)

ᵀuit + c(sit), σ
2
i (sit)) (6)

Define the log-likelihood L(θ) = log(
∑
i

∑
t α(sit)) with α(si1) = p(xi1|ui1, si1, θ)p(si1). This can

be efficiently solved as a filtering problem by the α-recursion [8]:

α(sit) = p̂i(x
i
t|sit)

∑
sit−1

p(sit|sit−1)α(sit−1) (7)

On the other hand, the partial solution conditioned on future observations can be solved using the
β-recursion:

β(sit−1) =
∑
sit

p̂i(x
i
t|sit)p(sit|sit−1)β(sit) (8)

and β(siTi
) = 1. By Bayes’ rule, combining these two partial results yields the desired state

probability:

γ(sit) = p(sit|Xi, U i, θ) =
α(sit)β(sit)∑
sit
α(sit)β(sit)

(9)

Because each subject’s time series is conditionally independent with one another given the model,
the expectation step can be done independently on each subject. Finally, we can derive the joint state
transition probability for the hidden Markov chain layer by normalization with

p(sit, s
i
t+1|Xi, U i, θ) = α(sit)p̂i(x

i
t+1|sit+1)× p(sit+1|sit)β(sit+1) (10)

M-step: The maximization step uses the state distributions calculated in the expectation step to
optimize the system coefficients by maximizing the likelihood:

E =
∑
i

∑
t

〈log p̂i(x
i
t|sit)〉pold(sit|Xi,Ui) +

∑
i

∑
t

〈log p(sit|sit−1)〉pold(sit,s
i
t−1) (11)

Rewrite the system coefficients and variables as follows:

d(sit) =

a(sit)
b(sit)
c(sit)

 vit−1 =

[
xit−1

uit

]
(12)

The Karush-Kuhn-Tucker (KKT) conditions [2] to maximize the likelihood with respect to d(s) lead
to solving the following linear system by plugging 6 into 11:

∑
i

∑
t

pold(sit = s|Xi, U i)
xitv

i
t−1

σ2
i (s)

= [
∑
i

∑
t

pold(sit = s|Xi, U i)
vit(v

i
t−1)ᵀ

σ2
i (s)

]d(s) (13)
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Similarly, σ2
i may be solved by the following equation:

σ2
i (s) =

1∑
t′ p

old(sit′ = s|Xi, U i)
×
∑
t

pold(sit = s|XiU i)[xit − d(sit)
ᵀvit−1]2 (14)

2.1.2 Simultaneous System Identification, Missing Value Imputation, and Outlier Detection
for SAR

One of the critical challenges to learn the SAR model parameters arise from the large number of
missing values and frequent outlier points in the data set. This is illustrated in a fragment of real-world
time series BMI measurements in Fig. 2. Inappropriate handling of missing values and outliers may
lead to computational difficulties from the holes in the data set, as well as the bias and loss of
precision due to distortion of the data distribution [11]. For example, among the approaches that
handle missing values [5], the mean imputation method ignores the context as it fails to utilize the
underlying dynamics of the variables. The last-value-carried forward method takes a conservative
approach, underestimating the changes over time. Thus, neither of them is suitable for imputing
missing values in the dynamic modeling context for human daily behavioral data.

Extending the SAR population model, we develop a method that can simultaneously remove outliers
and impute missing values while conducting SAR model identification. We achieve this by modifying
the maximization step of the previously introduced EM algorithm. For clarity of presentation, we
firstly assume that there is only one input variable, so that νit = νit,1 = νit . We will remove this
restriction accordingly, as we shall see that in our method, each input variable can be handled
separately.

The missing value imputation and outlier detection is formulated as follows: denote the state
observations and input actions for subject i asXi = [xi1, . . . , x

i
Ti

] andU i = [νi1, . . . , ν
i
Ti

] respectively.
Let ΩXi and ΩUi be the index set of observed elements of Xi and Ui respectively. We estimate
X̂i = [x̂i1, . . . , x̂

i
Ti

] and Û i = [ûi1, . . . , û
i
Ti

] for system identification by solving the following
optimization problem:

min
X̂,Û

N∑
i=1

Ti∑
t=2

||xit − [a(sit)
ᵀxit−1 + b(sit)

ᵀuit + c(sit)]||2

s.t. ||((̂X)i −Xi)ΩXi
||0 ≤ ηX , ||((̂U)i − U i)ΩUi

||0 ≤ ηU

(15)

The objective function 15 is a squared loss function to evaluate the goodness-of-fit of the missing
values and outlier estimates of the entire data set X̂ and Û . Meanwhile, the constraints serve to

Figure 2: A typical example of life behavioral data from mobile sensors.
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limit the maximum number of outliers to be detected in X and U . The values of ηX and ηU can be
estimated by the upper bound of the percentage of outliers.

2.1.3 Solution Strategy

To simultaneously learn the system coefficients, estimate the state probabilities, as well as impute
missing values and remove outliers, we alternatively optimize three groups of variables: the state
distributions p(sit|Xi, U i), the system coefficients θ = d(s), σ2

i (s), and the missing value and outlier
estimates {X̂i, Û i} for all i ∈ {1, . . . , N} [12]. Calculating the state distributions and optimizing θ
can be done based on the EM algorithm. On the other hand, the missing values and outliers for each
subject i are estimated using the projected gradient descent method as follows:

X̂i
(k+1) = arg min

X̂i

{||X̂i − (X̂i
(k) −∆gX̂i

(k)
)||2F }

s.t. ||((̂X)i −Xi)ΩXi
||0 ≤ ηX

(16)

Here, gX̂i
(k)

, is the partial derivative of the objective function with respect to X̂i
(k), ∆ is the step size

that could be chosen to be a sufficiently small constant, while || · ||F denotes the Frobenius norm.
The optimization procedure is done as follows: First, select ηX elements in (X̂i

(k) − X̂
i − gX̂i

(k)
)

with the largest magnitudes as the outliers at the current iteration, forming a set ZXi
. Second,

assign the set of missing values Ω̄Xi
and the set of detected outliers ZXi

with new estimates as
(X̂i

(k+1))Ω̄Xi
∪ZXi

= (X̂i
(k) − gX̂i

(k)
)Ω̄Xi

∪ZXi
. The remaining elements in X̂i

(k+1) are set to the

same values as X̂i
(k). The update for U i follows a similar procedure. Here, note that additional

input variables can be separately handled by optimizing them with a similar procedure. The entire
model identification, missing value imputation, and outlier detection procedure is summarized in
Algorithm 1.

Algorithm 1: Population SAR Model Identification, Missing Value Imputation, and Outlier
Detection
Input: Xi

ΩXi
, U iΩUi

, ηX , ηU , ∀i ∈ {1, . . . , N} ;

Output: a(s), b(s), c(s), σ2
i (s), X̂i, Û i,∀i ∈ {1, . . . , N},∀s ∈ {1, . . . , S};

Randomly initialize a(s), b(s), c(s), σ2
i (s), and p(sit|sit−1∀i ∈ {1, . . . , N});

Initialize (X̂i)Ω̄Xi
and (Û i)Ω̄Ui

∀i ∈ {1, . . . , N} to the mean of Xi
Ω̄Xi

and U i
Ω̄Ui

respectively;
while ||L(k+1)(θ) − L(k)(θ)|| > ε do

E-step: Estimate γ(sit) by [reference] and p(sit|sit−1) by [reference]
∀i ∈ {1, . . . , N},∀t ∈ {1, . . . , T};

M-step: Optimize a(s), b(s), c(s), σ2
i (s) by [reference];

for i ∈ {1, . . . , N} do
Optimize X̂i: Select top ηX elements in (X̂i − X̂i − gX̂i)ΩXi

forming index set ZXi
;

(X̂i)Ω̄Xi
∪ZXi

← (X̂i − gX̂i)Ω̄Xi
∪ZXi

;

Optimize Û i: Select top ηU elements in (Û i − Û i − gÛi)ΩUi
forming index set ZUi

.;
(Û i)Ω̄Ui

∪ZUi
← (Û i − gÛi)Ω̄Ui

∪ZUi
;

k ← k + 1;
end

end
return a(s), b(s), c(s), σ2

i (s), X̂i, Û i,∀i ∈ {1, . . . , N},∀s ∈ {1, . . . , S}

2.2 Functional Data Analysis-Based Imputation and Outlier Detection

We compare our simultaneous missing value imputation and outlier detection method with methods
that initially preprocess these data defects, instead of solving them together with model identification
as formulated in 15. Specifically, in addition to other off-the-shelf simple missing value imputation
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and outlier detection methods, we are interested in functional data analysis (FDA) methods [9] for
studying time series data in our application.

In the FPCA framework, given a vector of observations y, we estimate the underlying function x
by the penalized least squares smoothing method that is formulated to minimize the following loss
function [9]:

PENSSEm(y|c) = (y − Φc)ᵀW (y − Φc) + λPENm(x) (17)

Note that the underlying function x is expressed in a different basis system as x = Φc, where Φ is the
basis matrix and c contains the coefficients representing x, the realizations of the function x in the
basis system defined by Φ. We can see that 17 is a weighted least squares estimation. The roughness
penalty term is added to enforce smoothness on the estimation of x, with λ being a penalty coefficient
and PENm(x) as the square integration of the mth derivative, a measure of a function’s roughness,
defined as PENm(x) =

∫
[Dmx(s)]2. The order of derivative penalized here is the second or fourth

order derivative [9]. We can subsequently substitute Φc for x and express this roughness penalty in
matrix form as follows: PENm(x) = cᵀRc, in which R =

∫
Dmφ(s)Dmφ(s)ds.

The loss function 17 is convex and solving this model leads to closed-form solutions by the KKT
conditions, similar as classic ordinary or weighted least squares problems [9]. The weighting for the
smoothness penalty can be determined by cross validation, using the penalty parameter that produces
the best estimation accuracy by the cross-validation testing

The smoothness assumptions of the estimated behavioral data may change as different variables
have varying degrees of smoothness, such as BMI vs. the number of calories burned in a day. To
comprehensively evaluate the performance, two different basis systems were explored with this
method, the B-spline bases and Haar wavelet bases. These basis systems were chosen due to their
stark contrasts, with the B-spline basis offering the smoothest estimation while the Haar basis can
capture abrupt changes in the data.

B-spline basis: The B-spline basis system represents functional data as a combination of piecewise
spline functions of a certain degree d, with the corresponding polynomials approximating the function
along with their derivatives up to d− 1 are constrained to be equal at these breakpoints or knots. This
produces a smooth representation of the behavioral data. To accommodate for abrupt changes that
may happen in behavioral data, multiple knots may be placed in a single time point. The equation
for a spline function is as follows. Let Bk(t, τ) be a piecewise polynomial function defined by the
breakpoint sequence τ , with k being the number of the largest knot positioned less than or equal to t.
Let K be the total number of subintervals used. Then, the spline function S(t) is defined as

S(t) =
∑

1≤k≤K

ckBk(t, τ) (18)

When estimating user behavioral data, we found that the best estimation was estimated when 4th order
spline is used while imposing a second derivative roughness penalty.

Haar wavelet basis: The Haar wavelet basis system is formed by a sequence of square-shaped
functions [4]. Its mother wavelet ψ(t) and scale function φ(t) are as follows:

ψ(x) =


1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

0 otherwise
(19)

The mother wavelet and scale function represent the basis system by different dilations and translations
n and k respectively, as defined by the following equation:

φn,k(t) = 2n/2ψ(2nt− k) (20)

This function is put into the basis matrix Φ, with the columns being a basis formed by certain
nonnegative integer n and 0 ≤ k ≤ 2K − 1, with K determining the number of approximating
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Figure 3: Missing value estimation and outlier detection using FPCA with B-spline and Haar wavelet
basis

functions used. This basis system is utilized with no roughness penalty term, reducing the estimation
problem into a weighted least squares problem.

Two examples comparing the missing value imputation and outlier detection performance of our
simultaneous system identification, missing value imputation, and outlier detection (SSMO) formula-
tion 15 against FPCA using the two different basis systems are shown in Fig. 3. On the top panel,
we see that with abundant and smooth data, the FPCA-based methods perform similarly to ours.
However, with sparsely observed data containing suspicious outliers, our method can better capture
the overall trend of BMI changes, as shown on the bottom panel of Fig.3.

2.2.1 Principal Component Analysis Through Conditional Expectation

Designed for analyzing sparse data, the principal component analysis through conditional expectation
(PACE) model is a non-parametric model that gives the best approximation of the functional data for
an individual subject by a linear combination of k functional curves by borrowing information from
the entire collection of subjects. Formulated similarly to FPCA methods, PACE models the data for
the ith subject Xi(t) as noisy sampled points from a collection of trajectories. These trajectories are
assumed to be independent realizations of a smooth random function, with unknown mean function
E[Xi(t)] = µ(t) and covariance function cov(Xi(s), Xi(t)) = G(s, t). The domain of Xi(t) is
bounded on a closed time interval T . Assuming an L2 orthogonal expansion of G exists in terms of
eigenfunctions φk and eigenvalues λk with G(s, t) =

∑
k λkφk(s)φk(t), the ith subject’s trajectory

can be represented as Xi(t) = µ(t) +
∑
k ξ

i
kφk(t), t ∈ T , where ξik are uncorrelated random

variables with zero mean. By also incorporating uncorrelated measurement errors, the PACE model
can be formulated as follows:

Y ij = Xi(T ij ) + εij = µ(T ij ) +

∞∑
k=1

ξikφk(T ij ) + εij T ij ∈ T, (21)

where εij are uncorrelated measurement errors with mean zero and constant variance σ2
i , and Y ij is

the jth observable data point of the ith subject.

To accommodate for the sparsity of daily behavioral data, local linear smoothers are used to estimate
the mean function µ(t), instead of traditionally taking the average at each time point. This is because,
in addition to being sparse, the time points of each user data may also not align with each other,
causing bias in estimating the mean function through averaging. Estimation of the variance σ2

i
is done through estimation of the covariance surface cov(X(T ij ), X(T il )). A linear fit is used to
estimate the diagonal elements of the covariance matrix, while a local quadratic fit is used for the
off-diagonal elements, as the covariance matrix is maximal along its diagonal. The eigenfunctions can
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Figure 4: Missing value estimation and outlier detection using PACE

be subsequently found by discretizing the smoothed covariance surface. In these steps, we utilized
the Gaussian kernel to perform the implicit feature mapping of the smooth surface estimation.

As a novelty introduced in the PACE formulation, the principal component scores are estimated by
conditioning over the observations Y i, rather than through numeric integration of the FPCA integral
transform commonly used in traditional FPCA [6]. Compared to traditional FPCA, this is more
suitable for sparse data since there are not enough points available to perform a numeric integration.
This is estimated by the following equation:

ξ̂ik = Ê[ξik|Y
i] = λ̂k(φ̂

i

k)ᵀΣ̂−1
Y i(Y

i − µ̂i) (22)

Here, λ̂k, φ̂
i

k, µ̂i, and Σ̂−1
Y i , are the estimates of λk, φik, µi, and Σ−1

Y i , the covariance matrix of Y i,
respectively [13, 6]. We apply this formulation for each measured variable separately, estimating the
model described above for each type of measured data in our collection of sensor behavioral data
(calories burned, calories consumed, number of steps taken, workout time, and BMI). To select the
number of eigenfunctions used in our model, we measure the fraction of variance explained (FVE)
and pick the model that explains at least 95% of the total variation.

Figure 4 illustrates the comparison of imputed trajectories by SSMO and PACE for the same
two subjects as in Fig. 3. Similar to the previous comparison with B-spline and wavelet based
FPCA methods, our method performs comparably to PACE when we have abundant and smooth
measurements. For cases with significant missing values and outliers, although PACE can be more
robust compared to the previous FPCA methods, our SSMO method again captures the BMI changes
more faithfully.

3 Results

We have implemented the population SAR model with the SSMO solution strategy on a real-world
daily behavioral dataset that we collected. This dataset consists of daily fitness behaviors of 25

Table 1: Evaluation result for different missing value estimation and outlier detection method
Mean + Med. Last + Med. Haar B-spline PACE Simultaneous

RMSE 0.5613 ± 0.5320 0.5294 ± 0.4875 0.1688 ± 0.1090 0.0826 ± 0.0621 0.0476 ± 0.0267 0.0321 ± 0.0166
ABS 0.2681 ± 0.1388 0.2588 ± 0.1346 0.0651 ± 0.0296 0.0443 ± 0.0229 0.0301 ± 0.0182 0.0241 ± 0.0116
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Figure 5: Missing value estimation and outlier detection method comparison

different users. The dataset includes diet, exercise information, and BMI collected from various sensor
devices. In this dataset, almost all users show significant missing values and outliers, with patterns
similar to Fig. 2. In our experiments, we take four types of recorded daily activity measurements,
including calorie intake (food), calories burned during workout or exercise, and workout time.

In our evaluation experiments, we first illustrate that integrating missing value imputation and outlier
detection with model identification outperforms the common two-step procedure of data preprocessing
and model identification. We then evaluate the SAR models with different complexity levels and
identify an appropriate model for the population dynamics in the given data set. We finally conduct
a feature selection analysis to increase our model’s robustness by removing potentially redundant
covariates. We benchmark different models and methods by conducting one-step ahead prediction of
future BMI trajectory.

3.1 Missing Value and Outlier Detection Evaluation

The simultaneous missing value and outlier detection of our method have been tested against several
analytic and off-the-shelf imputation and outlier detection methods. The methods we have compared
include the mean value imputation, last value-carriedforward imputation, functional principal com-
ponent analysis (FPCA) with B-spline bases [9], and PACE for sparse data [13]. In addition, the

Table 2: Absolute one-step-ahead prediction error of the SAR population model under different
model parameters (S1 denotes one-state model reducing to the traditional AR model, S2 denotes the
model with two latent states, and S3 for the model with three latent states)

Lx
1 2 3

Lx

1
S1: 0.045 ± 0.030 S1: 0.072 ± 0.027 S1: 0.084 ± 0.030
S2: 0.029 ± 0.013 S2: 0.037 ± 0.016 S2: 0.052 ± 0.024
S3: 0.024 ± 0.012 S3: 0.059 ± 0.056 S3: 0.074 ± 0.072

2
S1: 0.049 ± 0.024 S1: 0.059 ± 0.034 S1: 0.084 ± 0.032
S2: 0.029 ± 0.012 S2: 0.040 ± 0.019 S2: 0.064 ± 0.042
S3: 0.031 ± 0.013 S3: 0.041 ± 0.021 S3: 0.051 ± 0.033

3
S1: 0.056 ± 0.023 S1: 0.068 ± 0.026 S1: 0.096 ± 0.060
S2: 0.041 ± 0.015 S2: 0.040 ± 0.017 S2: 0.064 ± 0.044
S3: 0.037 ± 0.026 S3: 0.074 ± 0.072 S3: 0.045 ± 0.030
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Table 3: Normalized SAR coefficients for different variables under different states
Variable State 1 State 2 State 3

BMI 1.0003 0.9824 0.9950
Exercise calories -0.0032 -0.0047 -0.0043
Food calories 0.0007 0.0187 0.0104
Workout calories 0.0031 -0.0080 0.0017
Workout time -0.0251 0.0261 0.0072

commonly adopted simple mean value imputation and last value-carried-forward imputation methods
are augmented with a median filter for outlier removal.

In our tests, the population SAR model with simultaneous imputation and outlier detection performs
better than all the other methods we have benchmarked. As shown in Table 1, our population SAR
model with the SSMO solution gives the best prediction accuracy overall. The functional data analysis
methods PACE and FPCA with B-spline bases for two-step missing value imputation and outlier
detection perform better than naive off-the-shelf methods, but our unified simultaneous imputation
and outlier detection method in the population SAR model clearly outperforms them. A comparison
of our method and the other functional data analysis methods benchmarked for imputation and outlier
detection is shown in Fig. 5.

3.2 Model Selection

We evaluate several different model parameters on the order of time lags of the state observations,
Lx, the order on the input variables, Lu, as well as the number of states in the SAR model S. We find
that the parsimonious setup that gives the best accuracy is where Lx = Lu = 1, while S = 3. The
prediction accuracy of different testing setups is shown in Table 2. Increasing Lx, Lu, or S further
did not yield any improvements in prediction accuracy. This "peaking" phenomenon in prediction
accuracy may be caused by model overfitting of the training data. This causes the model to capture
spurious dynamics with increased number of model parameters. This is undesirable, as the additional
states would only over fit the training data noise, and not capture the true health dynamics.

The corresponding system coefficients obtained for the parsimonious model with the best prediction
accuracy are shown in 3. In 3, the coefficients for each variable are normalized such that each variable
ranges from -1 to 1. With this normalization, the effects of each variable towards BMI can be directly
seen without considering conversion factors.

For all three states, BMI would carry over to the next time point with very small changes, as the
coefficients for BMI is close to one for all the states. In the identified model, the input variables that
capture daily behavioral influence have less significant contribution to current BMI when compared to
the effect of previous BMI. This makes intuitive sense: The inherent BMI change dynamics should be
relatively stable, while the input variables should only produce incremental changes to the previous
BMI.

We conjecture that state 2 represents the most active state; state 1 represents the least active state,
while state 3 is an intermediary state in between these two. We speculate this due to the following
observations: First, note that the coefficient for BMI for state 2, denoted by a(2), is the smallest
followed by a(3) and a(1). Furthermore, a(2) < 1 and a(1) > 1. This means that without any
external intervention as observable input variables, subjects in state 2 inherently lose weight the
fastest while subjects in state 1 inherently gain weight. Second, we observe that with increasing

Table 4: Pairwise covariate correlation
Exercise calories Food calories Workout calories Workout time

Exercise calories 1 0.1806 0.4042 0.1996
Food calories 0.1806 1 0.1143 0.1374
Workout calories 0.4042 0.1143 1 0.7160
Workout time 0.1996 0.1374 0.7160 1
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Table 5: Prediction accuracies of feature removal steps
Features removed ABS RMSE

None 0.0241 ± 0.0116 0.0321 ± 0.0166
Workout calories 0.0311 ± 0.0107 0.0410 ± 0.0163
Workout calories, exercise calories 0.0325 ± 0.0220 0.0414 ± 0.0288
Workout calories, workout time 0.0375 ± 0.0369 0.0539 ± 0.0782
Workout calories, workout time, exercise calories 0.0637 ± 0.1110 0.1406 ± 0.4140

workout time, subjects in state 2 may have increasing BMI, but subjects in state 1 have decreasing
BMI. We speculate that subjects in state 2 are gaining muscle mass while subjects in state 1 can better
control their weight with more workout time.

The remaining coefficients also make sense intuitively. For example, for all the states, consuming
food increases BMI while exercise helps control BMI.

3.3 Covariate Selection Through Correlation Analysis

We further conduct a correlation analysis of daily activity variables to reduce the model complexity by
removing potentially redundant and/or strongly correlated covariates. With this, we hope to increase
our model’s robustness and better interpret the learned dynamic models under different conditions
(states). We first analyze the pairwise correlation of four covariates, as shown in 4. We order the
covariates based on their aggregated correlation with the other covariates and then sequentially remove
the covariate and learn the corresponding population SAR models with the remaining covariates.
This is repeated until a large drop in prediction accuracy is seen

In our case, we start by removing the highest correlated feature, workout calories. Then, we removed
exercise calories and workout time separately. We finally stopped when workout calories, exercise
calories, and workout time were all removed, causing a great decrease in prediction error. The
prediction errors for all the population SAR models with the corresponding covariates are shown in 5.

Based on the prediction accuracy, we finalize our population SAR model with two covariates: calorie
intake (food) and workout time. Its corresponding system coefficients are shown in 6. Here, we see
that there are three clear modes for the subject’s health dynamics. Subjects in state 1 tend to gain
BMI more easily while subjects in state 2 tend to lose BMI more easily, as shown by their larger
and smaller coefficients respectively. Finally, subjects in state 3 are resistant to BMI change due to
behavioral actions while having a steadily decreasing baseline BMI shown by the state’s coefficient
for BMI, denoted by a(3) < 1.

3.4 Prediction Accuracy Evaluation

We further compare our model with the linear dynamic system model without switching states,
denoted as SSMO. Unlike our model, this model does not consider the potential heterogeneous
dynamic changes in daily behavioral data and models each subject’s dynamics with a different model
instead of adopting a population model.

We benchmark the two models using both the L − 1 norm absolute difference error (ABS) and
the residual mean squared error (RMSE) in conducting one-step ahead prediction of future BMI
trajectory. Our tests show that the SAR population model performs significantly better than SSMO as
shown in Fig. 6 and Table 7. Clearly, our population SAR model captures the BMI changes more
faithfully by allowing abrupt changes and borrowing signal strengths across subjects.

Table 6: Normalized SAR coefficients for the final selected feature set
Variable State 1 State 2 State 3

BMI 1.0007 0.9946 0.9992
Food calories 0.0051 0.0017 0.0001
Workout time -0.0098 -0.0209 -0.0013
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(a) (b)

Figure 6: Prediction trajectory comparisons of the final SAR model.

4 Conclusions and Future Work

We have implemented and carried out comprehensive evaluation of population switching-state auto-
regressive (SAR) models together with missing value imputation and outlier detection on real-world
daily behavioral data. Different from the existing common procedure of imputation and outlier
detection as separated data preprocessing step when analyzing behavioral sensor data, we handle
missing data and outliers by simultaneously considering them while conducting model identification.
We have conducted model selection to obtain the most accurate and parsimonious representation of
the given data set and have shown that the identified model makes intuitive sense.

From our evaluation experiments, conducting missing value imputation and outlier detection while
simultaneously identifying the model significantly improves model accuracy when compared with
methods that firstly preprocess the data. In addition, we show that considering population-wide
effects and dynamic heterogeneity significantly improves prediction performance on our data set.

As the dynamics of human behavioral data has been largely an uncharted research territory, charac-
terizing the science of these unknown dynamics demands more in-depth study of the principles and
complex relationships among the health outcomes and their control variables. By understanding these
relationships, we plan to derive an automatic health intervention framework using the learned daily
behavioral health model. Ultimately, integration of these highly analytic models in real-world clinical
implementation demands collaborations with systems engineering and health implementation science
to ensure optimal patient treatment.

In addition to deriving personalized health management, the proposed system is generally useful for
dynamic modeling with big and low-quality data and their translation into healthcare decision making
outside of clinical settings. With appropriate infrastructure, it will have a profound impact on deriving
effective smart and connected health solutions using emerging mobile sensors and applications.
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